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Experimental Apparatus 



An array of diodes for the measurement of the mid-height 
temperature distribution





PROPRTIONAL-DERIVATIVE CONTROLLER
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Controller:
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q is the deviation of the temperature from a desired (set) state
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Simplified controller:



LINEAR STABILITY ANALYSIS





PROPORTIONAL CONTROLLER – STABILITY CURVE
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THE UNCONTROLLED 
FLOW IN THE CYLINDER

ASPECT RATIO: H/D=1



The performance of the proportional and 
proportional derivative controller 
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• Measured maximum 
and minimum mid-
height temperatures in 
an upright circular 
cylinder are depicted as 
functions of time. 
Initially, the controller is 
not active. When the 
bottom heating is turned 
on, convection is 
established. Once the 
controller is turned on, 
the difference between 
the maximum and 
minimum temperatures 
decreases and the 
convection is suppressed. 
The controller does not 
change the power input 
into the cylinder.

DYNAMICS OF THE CONTROLLED SYSTEM

Controller 
off

Controller on

Pr=10,000



Summary

• The proportional controller and proportional-derivative 
controller were successfully implemented both in 
experiment and theory

• The proportional controller increased the Rayleigh 
number by a factor of 1.4

• Further increases in the proportional controller gain led to 
a decrease in the critical Rayleigh number, due to 
oscillations in the presence of large proportional gain 

• A combination of proportional and derivative controllers 
was able to increase the critical Rayleigh number by as 
much as a factor of 1.7. 



QUESTIONS
Can we do better with synthesized (optimal 

controllers such as H2 and H�)?
What is the effect of the nonlinear terms that are 

neglected in the controller’s design?
What is the basin of attraction of the controlled 

system?

To investigate the above issues, we selected a 
relatively simple model problem:  The Rayeligh-
Benard-Lapwood (RBL) convection of a box 
saturated with a porous medium, heated from 
below and cooled from above.



The Darcy-Lapwood-Rayleigh-Benard 
(DLRB) Problem

• Two-dimensional, square 
box, with edge length H, 
filled with a saturated 
porous medium. 

• The box is heated from 
below with a controllable 
heat flux. 

• The box’s top is maintained 
at a uniform temperature T0. 

• The left and right walls are 
insulated



Mathematical model

• Continuity equation:

• Momentum equation:

• Energy equation:
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Temperature distribution (no-motion state) 



Convection at Ra=30

Constant temperature 
contour

Streamlines



Linear model

• The linearized form of the equations in local form about 
the motionless state  0V =


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Discretized Linear Model

• The PDEs are converted into a set of ordinary differential 
equations by projection on a finite element space

• To verify the numerical code, the computed critical 
Rayleigh numbers for the uncontrolled problem (Neuman 
boundary condition) and for the related problem of fixed 
bottom temperature (Dirichlet boundary condition) were, 
respectively, 29.3 and 37.1. These are in excellent 
agreement with published data 
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Plant and Observer Equations
• By eliminating Vy in favor of q: 

( ) ( ) ( ) ( ) ( )u wX t A Ra X t B U t B w t= + +

( ) ( )Y t CX t=

• Controller objective: stabilize the no-motion, 
equilibrium state at high Ra numbers



Ad-Hoc Proportional Controller 

• The proportional controller:

• The control input (the heat flux at y=-0.5) is modulated in 
proportion to the deviation of the mid-layer temperature 
from its conductive value 

( 0 )pU K X x t= - , ,



The critical Rayleigh number (solid line) for the transition from  the 
motionless to the motion state and the corresponding imaginary part sI 
of the eigenvalue (dashed line) are depicted as functions of the ad-hoc 
proportional controller gain Kp.

Ad-hoc Proportional Controller

Ra uncontrolled 

=29.3 



Proportional controller’s performance

• As Kp increases, the critical Rayleigh number increases as 
well.  When Kp=8.4, the critical Rayleigh number is about 
66.8

• Further increases in the controller’s gain lead to oscillatory 
convection and reduce the critical Rayleigh number 



H2 Controller 

• The cost function:

• The control strategy is:
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• Contours of the H2 
controller gain 
associated with an 
actuator located at 
x=0.6 are depicted as a 
function of location (a) 
and K(x,0) as a function 
of x (b).  The controller 
is designed to operate 
at RaD=120. 

• The gain is not local

a

b



Controller (Robust Controller) H¥

•     controller stabilizes the system under the worst possible 
disturbance. 

• It requires that the following transfer function is bounded

• The above is equivalent to finding the saddle point of the 
objective function
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Calculation of the controller’s gain

• P is obtained by solving the Riccati equation



• Only some of the states are measured 
m(t)=Cmx+Dww

• By minimizing the error between the observed 
states and real states, the estimator will be

Constructing a H� state estimator



Selection of g 

• In general, the smaller g ,the  better the performance
• g needs to satisfy the following conditions:



The smallest bound gc of the  transfer function for which a 
steady solution of the Riccati equation exists as a function of 

the Rayleigh number



The range of Rayleigh numbers 
for which the controlled system 
is stable as a function of the 
Rayleigh number for which the 
controller was designed (RaD).  
The solid line depicts the design 
Rayleigh number.  The dashed 
and dotted lines correspond, 
respectively, to the linear, 
quadratic Gaussian (H2) 
controller and the suboptimal 
robust controller.  The regions of 
stability and instability are 
indicated in the figure with the 
letters S and U, respectively.



The Performance of  H2 controller and  H�  robust 
controller

• Both controllers can stabilize the system at any 
desired Ra number

• Due to the large g, the differences between H2 
controller H� and controller are slight

•  Both controllers maintain linear stability for all 
Ra<RaD only when RaD, is smaller than a certain 
Ra

• As Ra number increases, the stable range shrinks.  



The Normality of the Linear Operator 
• When a stable system is normal, all disturbances will 

decay monotonically 
• When the controlled system’s linear operator is not normal, 

some disturbances may amplify (sometimes a great deal) 
before their eventual decay (even when all the eigenvalues 
have a negative real part)

• Large disturbances may render the neglected nonlinear 
terms important, thus providing a bypass mechanism for 
transition from the stabilized state to another state. 

• Pseudospectra and transient growth characterize the non-
normality



Linear operator’s pseudospectra 

• The linear operator of the controlled system: Ac.  
• DAc is a perturbation to Ac 
• The e-pseudospectra of Ac, D(Ac,e), is the set of 

eigenvalues ze of Ac+DAc, where ||DAc||=||eAc||.  
• When Ac is normal, D(Ac,e) is a set of points 

within a distance e from the corresponding points 
in D(Ac,e).  

• When Ac is non-normal, the distance between 
points in D(Ac,e) and the corresponding points in 
D(Ac,0) will be much larger than e. 



• The pseudospectra of 
the linear operator A of 
the uncontrolled system 
when Ra=66.  The 
contour lines 
correspond to e=1, 101/2, 
10, 103/2, and 102.  The 
disk has a radius of 100.

A is nearly normal 
e=100



• The pseudospectra of 
the linear operator Ac of 
the system controlled 
with a H2 controller 
when Ra=120.  The 
contour lines 
correspond to e=1, 101/2, 
10, 103/2, and 102.  The 
disk has a radius of 100.

• The operator Ac is 
nonnormal 

e=100

e=100



Transient growth

• The linear, controlled system has a solution of the form 

• ||x(t)||=||exp[(A-BK)t]||||x(0)||, where ||x(t)||2=XT(t).x(t). 
•                               is a measure of the disturbance’s 

growth 
• The maximum value of G(t), 
    is a measure of the disturbance’s amplification 
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The transient growth of  G(t) as a function of time.  
Ad-hoc, proportional controller, Ra=66, and Kp=8.4.



• The maximum transient 
growth Gmax as a function 
of the Rayleigh number for 
the various control 
strategies.  The solid, 
dashed, dash-dot and 
dotted lines correspond, 
respectively, to the ad-hoc 
proportional (with gain 
Kp=8.4) controller, 
quadratic-Gaussian (H2) 
controller, suboptimal 
robust controller, and H2 
controller without 
estimator.



Dynamics of the Nonlinear Controlled System 

• The most dangerous disturbance which leads to 
the largest amplification, is used as initial 
condition to the nonlinear simulation 

• The basin of attraction can be determined 
numerically 

• Finite element method is used to solve the 
Lapwood problem



Determining most dangerous disturbance 

• Singular value decomposition allows us to determine this 
“most dangerous” disturbance

•  U and V are unitary matrices with orthogonal columns 
(UUH=VHV=I) and is a diagonal matrix that contains the 
singular values 

• And 

maxexp( )H
cU A t V = å

max 1 1 1exp( )cA t V U s=

max 1 maxexp( )cA t Gs= =



a

b

The temperature T at 
(x,y)=(1/8, 0) is depicted 
as a function of time.  
Ad-hoc proportional 
controller, Ra=66, and 
Kp=8.4.  The 
disturbance amplitude 
is, respectively, 0.07 and 
0.08 in (a) and (b).



a

b

The critical disturbance 
amplitude ec defining the 
basin of attraction of the 
controlled state as a 
function of the Rayleigh 
number (a) and as a 
function of (Rac-Ra)/(Ra-
RaG)0.6 (b).  Ad hoc 
proportional controller. 
Kp=8.4.



The critical amplitude of the optimal disturbance depicts as a 
function of the Ra number for the H2 optimal controller



Summary of the DLRB problem

• Linear proportional, quadratic Gaussian, and suboptimal   
controllers stabilize the no-motion state of the RB problem.

• The ad-hoc, linear, proportional controller is capable of 
increasing the critical Rayleigh number for the transition 
from the no-motion state to the motion state by nearly a 
factor of 2.

• Since the plant is stabilizable and detectable, the 
synthesized suboptimal  and quadratic Gaussian regulators 
H2 do not have any limitations in terms of the magnitude of 
the Rayleigh number. 

H¥



Limitations of the linear controllers

• Possible saturation of the actuators 
• Non-normality of the controlled system

– The increasing non-normality of the linear operator as 
the Rayleigh number increases implies that 
disturbances may amplify a great deal before they 
eventually decay. 

– Large disturbances render the neglected nonlinear 
dynamics important. 

– Non-normality also causes numerical difficulties in the 
calculation of the controller gains.



Outlook

• Linear control theory is a very powerful design tool, but it 
does not adequately address the adverse effects of 
nonlinearities 

• Methods for developing low dimensional models need to 
be developed to achieve effective controllers and 
estimators that can be implemented in practice

• There is a need to develop algorithms to optimize the 
number and positions of the sensors and actuators 
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