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Introduction
• The ability to control flow patterns is important from both the 

technological and the scientific points of view:
– The ability to control may lead to a deeper understanding of dynamic 

processes, i.e., the structure of strange attractors
– Many industrial processes do not operate under optimal conditions.  Control 

would enable to achieve better performance at a reduced cost 

• Controller’s objectives:
– Maintain flow conditions other than the naturally occurring ones
– Stabilize otherwise non stable flows
– Induce chaos/mixing in otherwise laminar flows

• The flow control problem is difficult
– High dimension systems
– Nonlinearities



Some applications of flow control
• Turbulence control: drag reduction in aircraft, ships, and 

submarines
• Flow control in turbo-machinery
• Crystal growth: suppression the convection and/or flow 

instability
• Aluminum production: suppression of interfacial 

instabilities (Davidson estimates that a 0.5cm reduction in the electrolyte thickness 
may lead to annual savings of over US $108.) 

• Chemical and biological reactions, combustion, and heat 
exchange: enhanced mixing



DT3-9, DT6-12

The Thermal Convection Loop 

Singer, J., Wang, Y., Z., and Bau, H., H., 1991, Controlling a Chaotic System, Physical Review Letters, 66, 
1123-1125. 
Wang Y., Singer J., and Bau, H. H., 1992, Controlling Chaos in a Thermal Convection Loop, J. Fluid 
Mechanics, 237, 479-498.



A one-dimensional model for the thermal loop

• The continuity equation (Boussinesq's approximation):

• The momentum equation:

• The energy equation:

u = u(t)
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SPECTRAL EXPANSION

• An infinite set of ODEs
• Three of the equations decouple from the rest of the set with exact closure:
  

  

 x1(t) is cross-sectionally averaged speed; 
 x2(t) and x3(t) are, respectively, proportional to the fluid's temperature differences between positions 3 and 

9 o'clock and positions 12 and 6 o'clock around the loop 

x1
•
= P(x2 - x1)

x2
•
= -x1x3 - x2

x3
•
= x1x2 - x3 + RaW1

(Wall temperature)

(Fluid’s temperature)



The equilibrium states of the uncontrolled loop (W=-1)

x1
Unstable 
periodic 
orbit

Chaotic (strange) attractor

B0: x1=x2=0, x3=-Ra
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Physical mechanism for Flow Instabilities

Small disturbance causes a fluid parcel in 
the heater to be hotter than usual

Buoyancy � , Velocity �

Fluid goes through the heater/cooler faster 
than usual

Buoyancy � , Velocity �

Fluid goes through the heater/cooler 
slower than usual



CHAOTIC ADVECTION

The experimentally observed temperature difference between positions 3 and 9 o’clock (DT3-9) 
is depicted as a function of time. Ra=3Ra (Q=3QC).

DT3-9



CHAOTIC ADVECTION

The experimentally measured temperature difference between positions 6 and 12 o’clock (DT6-12) is 
depicted as a function of time. Ra=3RaH (Q=3QC).

DT6-12



Reconstruction of the attractor from 
experimental data  Ra=3RaH

Phase portrait based on the 
solution of the Lorenz 
equations (Bewley, 1999)

PHASE-SPACE PORTRAITS



Flow control objectives
• Maintain motionless state (B0) when the motionless state is normally 

unstable (Ra>1) (Singer et al., 1991a).
• Maintain time-independent convections when Ra>RaH  i.e.,suppress chaos 

(Singer et al., 1991a, Wang et al., 1992, Burns et. al., 1998, Yuen & Bau, 
1999).

• Maintain periodic motion of desired periodicity under conditions when the 
system would normally assume chaotic behavior. There is an infinite 
number of non-stable chaotic orbits embedded within the chaotic attractor. 
(Singer & Bau, 1991b, and Yuen & Bau, 1996).

• Induce chaos in otherwise laminar (fully predictable, Ra<RaH), non-chaotic 
flow (Wang et al, 1992).

x1
Unstable 
periodic 
orbit



Flow control strategies 

Open loop control
• Appropriate design to achieve 

desired outcomes, i.e., tilt the 
loop or provide asymmetric 
heating to suppress chaotic 
advection.  

• Use pre-determined actuation, 
i.e., modulate the heating rate 
as a function of time – periodic 
modulation of the heating rate 
delays transition from the no-
motion to the convective state. 

Closed loop (feedback) control

• Modulate the control input as a 
function of measured (observed) 
events in the plant, i.e., modulate 
the heating rate as a function of 
the deviation of the measured 
temperature from a desired value. 
to enhance the disturbance-
dissipating mechanisms and, in 
turn, stabilize the flow.



Feedback Control Strategies

• Ad-hoc, linear proportional (PID) control (Physically 
intuitive)

• Linear Quadratic Gaussian (LQG) Optimal control H2: 
minimize a quadratic cost function (requires full 
knowledge of the plant’s state)

• Linear robust control (H�): minimize a cost function 
subjected to the worst possible disturbances

• Nonlinear control
– Linearizing controller
– Neural networks
– Polynomial controller to alter the direction of the 

bifurcation



Thermal loop control: ad-hoc, linear 
proportional controller 

• Control objective 
   Suppress the chaotic behavior and maintain “laminar” flow

• Control strategy 
    Linear proportional feedback control

• The control model
    Rewrite the equations in local form about the B+ state

x = x + x'
)'()',(' xNLxRafx x +=



Local form about the B+ state 
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The eigenvalues of the controlled system depicted in the complex 
plane as functions of the proportional controller gain. K<0, Ra=50, 
and P=4

The controller affects the position of the eigenvalues of the 
controlled system



The critical Ra number as a function of the controller gain K. 
Stabilization of the B+ state. P=4

No control



The temperature difference between positions 3 
and 9 o’clock as a function of time 

• With proportional controller • Without controller

 

Ra=3RaC



Controller off Controller on



BIFURCATION DIAGRAM OF THE CONTROLLED SYSTEM
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Subcritical Hopf bifurcation
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Non-stable periodic orbit:

Concern: the controlled system may have a limited basin of attraction



Nonlinear controller to invert the direction of the  
bifurcation 

• In the presence of a subcritical bifurcation, the controlled 
state may have a limited basin of attraction 

• The loss of stability may occur through non-linear bypass 
mechanisms

• This early transition would be less likely to occur for 
supercritical bifurcation. 

• Nonlinear controllers may renders subcritical bifurcation 
supercritical and potentially increase the domain of 
attraction of the stable subcritical state

Yuen, P. K., & Bau, H. H., Rendering Subcritical Hopf Bifurcation Supercritical, J. 
Fluid Mechanics, 317, 91-109, 1996.



Nonlinear controller on the thermal loop

• To implement the non-linear controller, we replace 
the control law with the nonlinear rule

       
• f(c) is a nonlinear function with f(0)=f'(0)=0  such 

as f(c)=c3
• To avoid possible divergence of the controller 

f(c)=c3, one can use a bounded function such as

( ))()( 22 txfktxku np -=

f (c) = -3 tanh c( )- c( )



Weakly nonlinear analysis 
• x= {x1, x2, x3} denote, respectively, the deviations from B+ , the local form 

will be:

•Using a parametrization in terms of e, expand x and Ra into the power series:

L1(Ra)x = x
••
+ L2(Ra)x = x
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• impose solvability condition on the RHS of the O(e3) equation to 
obtain the equation:

• The amplitude equation:

• The O(e) equation is the linear stability problem

•  At O(e2): 

• At O(e3):
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The performance of nonlinear controller

The states B+ and BP (periodic 
orbit) are depicted as functions 
of Ra for kn=0, kn=-1, and 
P=4. (a) kp=0, (b) kp= -1.  The 
solid and dashed lines 
correspond, respectively, to 
linearly stable and non-stable 
numerical solutions.  The dash-
dot line in (b) represents the 
analytic solution.



Introduction to optimal control

• Cost function:

• The optimal controller seeks a controller u that minimizes
     the cost function J.   Q and R are weight functions
• To account for the system’s constraints, we define the Hamiltonian: 

ζxuxuxx GNLBAf +++== )'('),'('
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•  The Lagrange multipliers, l(t), satisfy the adjoint equation: 
     

• The optimal controller is 
               

                  

l
•

= - A +
¶NL(x' )
¶x'

æ 
è 

ö 
ø 

T

l + Qx'

u = R-1BTl Problem: l(x0,x,t)



The nonlinear controller 
depends on:

Initial conditions (x’0)

Current system’s state 
variables (x’) 

and

Time (t)



Linear optimal controller 
• Drop the nonlinear term NL(x')
• Assume that only x2 is measured. 
    
    C1={0,1,0}, C3=I, and I is the identity matrix and ni(t) represents observation noise 

rank[B|AB|A2B]= 3

' 'A B G= + +x x u ζ

y i =Cix' +ni

• Controllable 
    by a proper choice of the input u, one can transfer the plant from any state x'(t0) at 

time t=t0 to any other state, x'1(t), in a finite time, (t-t0).

• Observable 
    given output y and the input u in the time interval t0<t<t1, one can deduct the initial 

state x'(t0)

rank[Ci
T |ATCi

T | AT( )2CiT] = 3



Construction of the linear optimal regulator 
• Minimize 

    Let t1 à  � to obtain the time-independent controller:

Jx =
1

2 t1 - t0( )
x' T Qx' +uTRu( )

t0

t1

ò dt

u = Kcx'
Kc = -R

-1BTS

0 =SA+ATS-SBR-1BTS+Q
S is the solution of the algebraic, matrix Ricatti equation

Algorithms for the solution of the Ricatti equation are available, i.e., Matlab



The basin of attraction of the linear controller
(non-linear system)

• The linear controller guarantees that any disturbances will decay asymptotically 
(tà�) to the the controlled state.

• Often the linear operator of the controlled system may be non-normal and 
disturbances may not decay monotonically.  In fact, even small disturbances may 
amplify a great deal prior to their eventual decay.  Once amplified, the disturbances 
may trigger un- modeled dynamics. Hence, it is important to investigate the basin of 
attraction of the controlled state .

• The basin of attraction of the controlled state Gc is a region WBA of phase space such 
that that

• In order to estimate the size of the basin of attraction of the controlled system, we 
construct a Lyapunov function or “energy”

0)('lim
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Lyapunov function
• Lyapunov function: H(x')>0, H(0)=0 for all x'¹0, where x'=0 is the 

fixed point of the controlled system
• There is no systematic way to construct an “optimal” Lyapunov 

function for nonlinear systems. 
• H satisfies a scalar equation of the form:

• F(x')=0 divide the phase space into subspace (I)  in which
                and subspace (II) in which   

H
•
=
dH
dt

= F(x' )

H
•
< 0 H

•
> 0



An estimate of the basin of attraction

• Assume H(x')=H1 is the largest “hyper-sphere” that 
contains the origin (x’=0) and is fully contained in region 
(I). 

• All trajectories starting inside H1, eventually 
monotonically decay to zero. 

•  The “sphere” H1 provides a lower bound (a conservative 
estimate) of the subspace of monotonically decaying 
disturbances. 

• The size of the “sphere” H1 depends sensitively on the 
choice of the Lyapunov function.  H1�WBA



The H2 sphere 
• H(x'0)>H1 do not necessarily diverge 

ü Trajectories starting in subspace II, may eventually cross over to 
subspace I, and converge to the origin. 

ü Trajectories starting in subspace I with H(x'0)>H1 are not 
guaranteed to end up at the origin.  Such trajectories may cross 
over to subspace II, and eventually end up on a different 
attractor. 

• define a second “sphere,” H2>H1 such that for all x'0 
when H(x'0)<H2 and t®¥, H®0 and x'(t)®0, albeit not 
necessarily monotonically. 



A Lyapunov function of thermal loop system

• The controlled system:

• Denote the eigenvalues and eigenvectors of AC as {h1, 
h2±ih3} and {v1, v2±iv3}, where hi and vi are real.  

• introduce the vector z=V-1x', where V={v1, v2, v3} 

x
•
' =ACx' +NL(x' ) AC =
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• define the Lyapunov function:
H = zTCz -
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The basin of attraction of the linear controller

The surfaces  are depicted as functions 
of the coordinates z1, z2, and z3 in a 
three-dimensional phase space.  The 
desired, set-state is at the origin.  
Trajectory A starting in subspace II 
(dH/dt>0) at z=zA, where 
H1<H(zA)<H2, is in the domain of 
attraction of z=0.  Trajectory B 
starting in subspace II at z=zB, 
where H(zB)>H2, is attracted to 
another fixed point, z=zF≠0, of the 
controlled system. Ra=3RaH=48 and 
Kc={0.47, -0.54, 2.07}.



The basin of attraction of the linear controller
•  The phase space of the last slide is projected 

on the plane z3=0. The spheres H1 and H2 are, 
respectively, conservative estimates of the 
domains of monotonic decay and the basin of 
attraction of the controlled state, z=0.  The 
´’s and o’s represent, respectively, the 
penetration points of trajectory A starting at 
z=zA and trajectory B starting at z=zB.  The 
numbers next to the ´’s and o’s denote the 
order of penetrations.  The blank and shaded 
regions correspond, respectively, to 
subspaces I and II.



The state estimator 

• When the full state information is not available,  or in the 
presence of measurement noise,  an estimator needs to be 
constructed to estimate the state x' from the observed data 
y. 

• The controller will become:
• In the above    is the state estimate. The deviation between 

the estimate and the actual state should be as small as 
possible.  

u =Kc ˆ x 
ˆ x 

e(t) = x' (t)- ˆ x (t)



The nonlinear estimator 
• We can construct the following dynamic system for the estimator

   
    Kf is known as the estimator’s filter

• The corresponding error equation is:

 

• The estimator tries to minimize
•  

• Unfortunately, A* requires knowledge of the state, x' which is not available 
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The filter for the nonlinear estimator

• Instead of minimizing               , as a more modest objective, we 
determine the filter Kf that renders the state e=0 locally attractive

• Local attraction is guaranteed when the logarithmic norm
                                        
   is negative definite 

• The logarithmic norm being negative is a conservative requirement 
that is sufficient, but not necessary, to assure that e=0 is attractive 
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The nonlinear estimator’s effect on thermal loop

• The largest real part of the 
state-dependent 
eigenvalues, Real(g1), is 
depicted as a function of x'.  
Ra=3RaH=48 and Kf

T 
={0.36, 1.75, -0.35}.

• gi(x', Kf), denotes the 
state-dependent 
eigenvalues of the 
estimator’s matrix A* 



Linear optimal estimator

• Dropping the nonlinear term, we construct the estimator 
based on the linear system

• Comparing with nonlinear estimator, the operator (A-KfCi) 
replaces the operator A*

• The optimal (Kalman) filter gain                          that 
minimizes the error expectation is the solution of the 
matrix Ricatti equation 

K f = PCi
TNi

-1

0 =AP +PAT -PCi
TNi

-1CiP +GQxG
T



THE CONTROLLER AND ESTIMATOR
The behavior of the optimally 

controlled nonlinear system with a 
nonlinear estimator.  Kc={0.47, -
0.54, 2.07} and estimator Kf

T={4, 
1.75, -0.35}.  Ra=3RaH=48. One 
state variable is observed (x2).  As a 
function of time, the figure depicts 
(a) the temperature difference 
between positions 3 and 9 o'clock 
(x2) (solid line), the estimate for x2 
(dashed line), and the behavior of 
the uncontrolled system (gray line); 
(b) the control signal, Ra+u; (c) the 
error, eTe/xTx; and (d) the largest 
real part of the state-dependent 
eigenvalues, Real(g1).



THE METHOD OF OTT-GREBOGI 
AND YORKE (OGY) 

• The chaotic attractor consists of a very large number of 
non-stable periodic orbits

• Ott, Grebogi, and Yorke (1990) suggested a scheme 
dubbed OGY that encourages the chaotic system to follow 
one of the many unstable, periodic orbits through state 
space 

• the chaotic system, with an appropriate control, can exhibit 
multiple behaviors. 

• Advantage of OGY: the control can be affected empirically 
without knowledge of a model for the system. 



Introduction to OGY method

• Consider a dynamics system
•  z(t) is a measurable system variable 
• Let Z(t)={z(t), z(t-t), z(t-2 t), …z(t-m t)} (Packard et al., 

1980, Takens, 1981).  The vectors Z(t) are used to 
construct the phase space portrait of the attractor

• Then construct a Poincaré map of dimension (m-1)
• Periodic orbits will appear as either fixed points or a 

collection of discrete points through which the system’s 
trajectories cycle 

),( uF
dt
d xx

=



Implementation of the OGY method

• In the vicinity of the fixed point to be stabilized, one 
identifies the local stable and unstable manifolds

• Use the controller                                  to nudge the 
trajectory towards the stable manifold 

Kp is the controller’s gain and n is a unit vector such that
                      and                  
    eu and es are, respectively, unit vectors in the linear 

unstable and stable manifolds  

 )(ˆ -Ku p Z*-Zn k•=



Summary

• Various control strategies were used to alter the stability 
characteristics of the thermal convection loop – both in 
experiment and theory

• We examined
– Ad-hoc proportional controller
– Non-linear cubic controller to alter the direction of the bifurcation
– Optimal (H2) controller

• The thermal convection loop is a low-dimension system.  
Can similar techniques be applied to high-dimension 
systems?  


